Paper 3

Questions are applicable for both core and extended candidates

1 (a) Fig. 6.1 shows the displayed formula of a molecule of crotyl alcohol.

Fig. 6.1

(i)	On Fig. 6.1 draw a circle around the alcohol functional group.	[1]
(ii)	Describe the feature of crotyl alcohol that shows it is an unsaturated compound.	
		[1]
(iii)	Deduce the molecular formula of crotyl alcohol.	
		[1]
(iv)	Crotyl alcohol is soluble in water.	
	The boiling point of crotyl alcohol is 121°C. The boiling point of water is 100°C.	
	Suggest how fractional distillation can be used to separate a mixture of crotyl alcohol a water.	and
		[2]

2

This qu	estion is about iron.						
(d) Cry	(d) Crystals of iron(II) chloride can be prepared by adding excess iron to dilute hydrochloric acid.						
(i)	Suggest how the unre	eacted iron is removed	d from the reaction	mixture.			
					[1]		
(ii)	Describe how dry of iron(II) chloride.	crystals of iron(II) ch	nloride are made	from a dilute s	olution of		
					[2]		
3 (b) Cr	ystals of zinc chloride o	an be prepared by rea	acting excess zinc	with dilute hydrocl	nloric acid.		
Cho	ose from the list, the me	ethod used to separate	the unreacted zinc	from the reaction	mixture.		
Drav	v a circle around your o	chosen answer.					
	chromatography	crystallisation	evaporation	filtration	[1]		

4 (a) Fig. 2.1 shows the distillation apparatus that can be used to separate water from aqueous copper(II) sulfate.

Fig. 2.1

		Explain how distillation separates water from aqueous copper(II) sulfate.	
			[2]
5	Thi	s question is about acids, bases and salts.	
	(b)	Describe how to prepare pure, dry crystals of the salt zinc sulfate from an aqueous solution zinc sulfate.	า of
			[2]

This question is about acids, bases and salts.

(f)	Describe how to sodium sulfate.	prepare	pure o	dry	crystals	of	sodium	sulfate	from	an	aqueous	solution	of

.....

Paper 4

Questions are applicable for both core and extended candidates unless indicated in the question

7	This qu	estion is about sulfur and compounds of sulfur.	
	(d) Lea	$\operatorname{ad}(\operatorname{II})$ sulfate is an insoluble salt.	
	Lea	$\operatorname{ad}(\operatorname{II})$ sulfate can be made from aqueous ammonium sulfate using a precipitation reaction	n.
	(i)	Name a solution that can be added to aqueous ammonium sulfate to produce a precipit of lead(II) sulfate.	ate
			[1]
	(ii)	Write an ionic equation for this precipitation reaction. Include state symbols.	
			[3]
	(iii)	The precipitate of lead (II) sulfate forms in an aqueous solution.	
		Describe how pure lead(II) sulfate can be obtained from the mixture.	
			[3]
8	The nar	mes of four esters are listed.	
		methyl propanoate	
		ethyl propanoate	
		propyl propanoate	
		butyl propanoate	
	(b) All	four of the esters in the list are liquids at room temperature.	
	Na	ame the technique used to separate ethyl propanoate from a mixture of the four esters.	
			[2]

- **9** This question is about zinc and its compounds.
 - **(b)** Zinc sulfate crystals, ZnSO₄•7H₂O, are hydrated.

Zinc sulfate crystals are made by reacting zinc carbonate with dilute sulfuric acid.

The equation for the overall process is shown.

$$ZnCO_3 + H_2SO_4 + 6H_2O \rightarrow ZnSO_4 \cdot 7H_2O + CO_2$$

- **step 1** Large pieces of solid zinc carbonate are added to dilute sulfuric acid until the zinc carbonate is in excess. This forms aqueous zinc sulfate.
- **step 2** The excess zinc carbonate is separated from the aqueous zinc sulfate.
- **step 3** The aqueous zinc sulfate is heated until a saturated solution is formed.
- **step 4** The saturated solution is allowed to cool and crystallise.
- **step 5** The crystals are removed and dried.
- (i) In step 1, zinc carbonate is in excess when no more zinc carbonate dissolves.

 State one other observation that indicates the zinc carbonate is in excess in step 1.

 [1]

 (ii) Name a different substance, other than zinc carbonate, that can be added to dilute sulfuric acid to produce aqueous zinc sulfate in step 1.

 [1]

 (iii) Step 1 is repeated using powdered zinc carbonate instead of large pieces.

 All other conditions are kept the same.

 The rate of reaction increases.

 Give a reason why the rate of reaction increases. Explain your answer in terms of particles.

(iv)	Suggest what is observed when the solution is saturated in step 3 .
(v)	The formula of zinc sulfate crystals is ZnSO ₄ •7H ₂ O.
	Give the formula of the solid formed if the crystals are heated to dryness in step 3 .
	[1]